かけ算についての記事を読んで(つづき)
(昨日の記事のつづきです。(しかし、実は今かなり体力も脳味噌も限界が近いようで、意味不明の文章になったらどうしようとちょっと不安だったりしますが・・・。)
塾講師時代、SZKさんが書いておられたように、「3×9+5×9」から「8×9」をすんなり導き出せる子には殆ど出会ったことがなかった。(個人的には、「9×3+9×5=9×8」の方が子どももイメージしやすいのでは?とは思うが。)
それが、教室を始めて今の教材や教具を使うようになってから、とにかく、学校でかけ算を習うより先に教室でかけ算の学習をすることができた子達の多くが、例えば「8×6+8=8×□」や「6×5-□=6×4」ような問題に出会っても、苦もなく(もちろん、計算してから答えを導き出すでもなく)、さも当たり前のこととして□に正しい答えを書いていくのを目の当たりにするようになった。
少なくない子ども達が「なんや、こんなん簡単!」と言って解いていく。
そして、実際にこの教材、教具でかけ算を習った子にとっては、確かに「こんなん簡単」なのだ。
初めてそういう子たちの姿を目にしたとき、かなり新鮮な驚きがあった。
(そうか・・・こうやって学習すれば、こんなに簡単だったんだ・・・)としみじみ思った。
因みに教室で使っている教材は、かけ算の単元に入っても、初めは一切九九は教えない。子どもたちは足したり引いたり、倍にしたり半分にしたりしながら、かけ算の答えを導き出していく。
九九の学習をさせる前に、2桁や3桁×1桁などの学習までしてしまう。そのあとでようやく九九が登場するのだが、そうなると、子どもたちは九九を知らなくても答えを出す方法がわかっているから、極端な話、スピードさえ求められなければ覚えたくなければ九九を覚える必要さえなくなるのだ。(もちろん、頻繁に使うものではあるので、最終的には覚えた方が便利だとは思うが、何が何でも絶対覚えなくてはいけないものではなくなる。)
どんぐりの糸山先生は三角計算でかけ算は全部で36個覚えればいいとおっしゃっているが、確かにそうだ。
何も、何が何でも81個必死になって覚える必要はないはずだ。
(そういえば、東大の池谷先生がかけ算の九九を覚えていないのはご存知の方もおられるのでは。池谷先生は、正に、足したり引いたり、倍にしたりというようなことを駆使して、結構な速さで計算されると何かで読んだことがある。)
とにかく覚えろ!的に覚えさせると、時には覚え間違いが発生する。
覚え間違えても、その答えが正しいのかどうか確かめる術を持たない子どもはそこでお手上げだ。覚えることが何より大事なのではなく、正しい答えが出せることこそ大事なことのはずではないか。
教室に来てくださっているお母さん方には、あまり早くから九九は覚えなくっていいですと機会があれば言っている。
というのも、先に覚えてしまっていると、考えて答えを出すというまどろっこしいことを嫌がって、結局「答えだけが出せる(その結果、分配法則や結合法則というものが実感できない)状態」になってしまいがちなのだ。
2年生さんは夏休みが明けたら(学校によっては夏休みに暗唱の宿題が出るようなところもあるかもしれないが)ボチボチかけ算の学習に入るだろう。
もし可能であれば、それまでにたっぷりと「かけ算とはなんぞや」という部分を学習させてあげてほしい。
そうすることで、その後に大いにプラスになることがあるはずだから。
| 固定リンク | コメント (0) | トラックバック (0)
最近のコメント