« 気になってはいるのですが…。 | トップページ | やっぱりそうか。 »

2008年8月20日 (水)

子どもたちとレッスンしながら思うこと

最近、特に何度も思っているのが、2けたの繰り下がりの引き算の考え方。

例えば、「54-37」とかだったら、学校では4から7引けないから、10「借りてきて」10から7引いて3、3と4で7、そのあと4(40)引く3(30)をして、答えが「17」というような流れになるんだろうと思うけれど、とりあえず、教室ではその考え方は基本的にはしない。

もともとベースとなっている、こう提示しなさいという方法としては、54から34を取って20、20からあと3を取って17という形になるのだけれど、それがすんなりいかない子は、まず54から30を取って24、24から7を取って(ここで、まず4を取ってあと3を取ると考える子と、10から7取って、14と3を合わせる子にわかれるにはわかれるが…)17という風になる。

ただ、数の感覚がかなり優れている子や、算数がとても好きな子は別として、やはり2けた同士の繰り下がりのある引き算になると、少しの間苦労して、苦労を経てクリアできるという子が多い。

色んな子たちとその単元を学習するとき、しばしば尋ねることがある。
例えば、先ほどの「54-37」なら、まあ、50から30を取ったら20になるというのはほとんどの子が問題なくクリアできるので、次に4から7が取れるかどうか尋ねると、これもまあみんな「取れない」と答える。
そこで、「いくつ取れない?」とか「いくつ足りない?」と尋ねると、これもまた、たいていの子がちゃんと答えられる。(この場合だと「3取れない(足りない)」と答える。)

そこまでの過程で苦労する子はそういないので、とすれば、結局、この問題の答えは
「20、3足りない」、つまり「20マイナス3」である。

子どもたちは大人が思っているより遥かにすんなり「マイナス」の感覚を受け止める。
言葉では説明できないのだろうけれど、3足りないことを「マイナス3やんね?」といえば、ほとんどの子がなんとなく理解しているように感じるのだ。

だったら、20マイナス3は20より3少ないということは、そう苦労せずとも理解できるのでは?と思えてならない。

この考え方に統一すれば、繰り下がりがあってもなくても、同じ考え方で考えられる。

75-32なら、70-30で40、5-2で3だから43。
54-37なら、50-30で20、4-7は取れないのが3、つまりマイナス3。20マイナス3で17。

(付け加えると、子どもたちはクイズ番組などで得点が減点されていってマイナスになるなどを目にしたりという経験をしてもおり、大人が「小学生なのに負の数なんてわからないのでは?」と思っているより遥かにそのあたりの感覚は分かる子が多いように思う。)

この考え方は、どの子にも通用しないんだろうか?
ある程度算数が得意な子とかでないと無理なんだろうか?
というか、うちにも算数が得意とは言えない子もいるんだけど、それでもできそうな気がするのだが…。

繰り下がりの引き算で苦戦しているお子さんがおられたら、ためしにやってみられてはと思ったりして書かせてもらったが、やはり難しいんだろうか…。

|

« 気になってはいるのですが…。 | トップページ | やっぱりそうか。 »

コメント

コメントを書く



(ウェブ上には掲載しません)


コメントは記事投稿者が公開するまで表示されません。



トラックバック


この記事へのトラックバック一覧です: 子どもたちとレッスンしながら思うこと:

« 気になってはいるのですが…。 | トップページ | やっぱりそうか。 »